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Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress
based on quasilinear theory, without considering the nonlinear momentum flux-h~vr~n~uki. However,
a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by
blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys.
Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong
electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation,
which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller
than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual
stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic
rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that par-
allel fluctuation spectrum asymmetry is not required for nonlinear residual stress. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919622]

I. INTRODUCTION

Tokamak plasma rotation and toroidal angular momen-
tum transport have been subjects of intensive study due to
their important role in reducing turbulent transport as well as
in stabilizing magnetohydrodynamic (MHD) instability such
as resistive wall modes.1,2 Owing to a wide range of benefi-
cial effects on stability, confinement, and performance of
tokamak plasmas,3,4 much effort has been devoted to under-
standing the mechanisms underlying the change in rotation
and how to control it. On one hand, there are a number of
known causes for the plasma rotation to slow down such as
nonaxisymmetric error fields,5,6 loss of momentum input as a
consequence of Alfven eigenmodes,7 and edge localized
modes (ELMs).8 On the other hand, toroidal rotation is
driven externally by neutral beam injection (NBI) on most
present day devices. However, beam injection may be of lim-
ited utility in providing enough external torque in future
reactors such as International Thermonuclear Experimental
Reactor.9 One alternative is to take advantage of intrinsic
rotation (spontaneous, or self-generated, in the absence of an
external momentum input), which has been widely observed
under a variety of operating conditions.10 Consequently,
understanding plasma rotation and momentum transport
under low external momentum input condition is of major
interest.

The total flux of parallel momentum driven by electro-
static turbulence has the form11

Pr;k ¼ hnih~vr~uk iþ hUk ih~vr~niþ h~vr~n~uki: (1)

Here, on the right hand side (RHS) of Eq. (1), the first term is
the parallel Reynolds stress, the second term is the convection,

due to particle flux, and the third term is the nonlinear flux.
The Reynolds stress can be further decomposed as

h~vr~uki ¼ #vu
@hUki
@r

þ VhUkiþPRes
r;k ; (2)

where on the RHS, they are diffusion, pinch term, and resid-
ual stress, respectively. The residual stress is thought to be
the origin of the intrinsic rotation, which has been inten-
sively investigated by using quasilinear theory.12 In addition,
turbulent acceleration is proposed as another possible mech-
anism for driving intrinsic rotation.13,14 Turbulent accelera-
tion acts as a local source or sink, which has different
physics from the residual stress. The third term on the RHS
of Eq. (1), h~vr~n~uki, represents the nonlinear (as opposed to
quasilinear) flux, driven by processes such as mode-mode
coupling and turbulence spreading.11 Most existing theoreti-
cal works on parallel momentum transport neglect the non-
linear flux, which is less understood.12 However, the
nonlinear flux may also influence the rotation profile, espe-
cially at the boundary where the relative fluctuation ampli-
tude can be strong, i.e., since ~n

n0
! 1, the nonlinear flux

cannot be dismissed as small. In this sense, momentum trans-
port theory is still not well developed.

Recent experimental results on TORPEX showed that
blob induced fluctuations are so strong that the toroidal
flow is transiently reversed, and the associated nonlinear to-
roidal momentum flux can be dominant for some time.15

This result suggests that the nonlinear flux is no longer neg-
ligible. Similar blobs in L-mode16–22 and ELM filaments in
H-mode23–32 are observed in tokamaks. In general, the non-
linear flux is of potential relevance in the strongly turbulent
edge. Therefore, to fully comprehend momentum transport,
a theoretical study of the nonlinear momentum flux in
strong turbulence seems necessary.a)E-mail: luwang@hust.edu.cn
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In the present work, we calculate the nonlinear parallel
momentum flux by using the three dimensional Hasegawa-
Mima equation33 containing the compression of ion parallel
velocity and the ion parallel momentum equation. For com-
parison, the parallel Reynolds stress is also calculated. We
find that the nonlinear diffusivity is small compared to the
quasilinear diffusivity from the Reynolds stress. However,
the dominant nonlinear residual stress can be comparable to
the quasilnear residual stress with opposite sign, if increasing
fluctuation intensity profile is used for the residual stress.34

This indicates that strong momentum transport induced by
blob ejection at edge is important to intrinsic rotation. We
also find that parallel fluctuation spectrum asymmetry is not
necessary for nonlinear residual stress, in contrast to the case
of quasilinear residual stress.

The remainder of this paper is organized as follows.
Section II presents the minimal model adopted in this work.
The nonlinear momentum flux and its comparison to the
Reynolds stress are presented in Sec. III. Finally, we summa-
rize our work and discuss the implications for momentum
transport and rotation response to blob ejection in Sec. IV. In
Appendixes A and B, we present details of the calculation.

II. MINIMALTHEORETICAL MODEL

To obtain the triple nonlinear momentum flux, h~vr~n~uki,
we need to calculate the coherent part of fluctuations for the
beat mode, and then use the two-scale direct interaction
approximation (TSDIA).35,36 In this way, the nonlinear par-
allel momentum flux can be written as

PNL
r;k ¼ 1

3
h~v cð Þ

r ~n~ukiþ h~vr~n cð Þ~ukiþ h~vr~n~u
cð Þ
k i

! "
: (3)

Here, the superscript (c) means the coherent component of the
beat mode. ~vr ¼ #iky c

B
~/ is the radial fluctuating E & B drift

velocity. For simplicity, the adiabatic approximation ~n
n0
¼ e~/

Te

is used, so we have ~nðcÞ

n0
¼ e~/

ðcÞ

Te
. If the temperature is not too

low such that k2kv
2
the=ðxk!eiÞ > 1, with vthe is the electron ther-

mal velocity and !ei is the electron-ion collision rate, the adia-
batic condition satisfies. Hasegawa-Mima(H-M) model33 and
Hasegawa-Wakatani(H-W) model37 are two popular drift
wave models. It is well known that the H-W model reduces to
the H-M model in the adiabatic limit. kk ¼ 0 driven mode

effects are neglected here. Now, the coherent parts of ~/ and
~uk are required. In this work, we adopt three dimensional

Hasegawa-Mima equations with parallel flow compression
which can be written as

@

@t
q2sr

2
?/#/

# $
þq4sxciẑ&r/ 'rr2

?/# ix(n/¼ csrkuk;

(4)

and the parallel momentum equation for cold ions

@

@t
þ xciq2s ẑ &r/ 'r

% &
uk # qs

@

@r
hUki

@

@y
/ ¼ #csrk/:

(5)

Here, ŷ and ẑ are the unit vectors in the poloidal and parallel
magnetic field directions, respectively. We have used the
standard normalization for electric potential fluctuation
/ ) e~/=Te, parallel velocity fluctuation uk ) ~uk=cs, with
xci ¼ eB=ðmicÞ the ion gyrofrequency, cs is the ion acoustic
velocity and qs ¼ cs

xci
is the ion Larmor radius at the electron

temperature. For the spatial scale, we consider two-scale
approach, i.e., r? ¼ ik? þ @=@r, where k? denotes wave
number of the fast spatial fluctuations and @=@r describes
modulation of the wave envelope, which occurs on a slowly
varying spatial scale. x(n ¼ kyqscs=Ln is the electron dia-
magnetic drift frequency with Ln ¼ #ð@lnn=@rÞ#1 density
gradient scale length and hUki is the mean parallel flow ve-
locity. The last term on the RHS of Eq. (4) comes from ion
parallel compression. In Eq. (5), the assumptions of isother-
mal electrons and xk * kkhUki are used, and ion pressure
gradient, rkPi, is absent due to the cold ion approximation.

Taking the Fourier transformations of Eqs. (4) and (5)
yield

@

@t
/k þ i

x(n

1þ k2?q2s
/k þ

ikkcs

1þ k2?q2s
uk ¼

X

k¼k0þk00
M1

k;k0;k00 ; (6a)

@

@t
uk # ikyqs

@

@r
hUk i/k þ ikkcs/k ¼

X

k¼k0þk00
M2

k;k0;k00 ; (6b)

where the nonlinear terms are

M1
k;k0;k00 ¼

xci

2 1þ k2?q2s
# $q4s

'
ẑ & k0? ' k00? k002? # k02?

# $
/k0/k00

þi/k0
@

@r
/k00 k0y k002? # k02?

# $
# 2k00x ẑ & k0? ' k00?

h i

#i/k00
@

@r
/k0 k00y k002? # k02?

# $
# 2k0xẑ & k0? ' k00?

h i(
;

(7a)

M2
k;k0;k00 ¼

xci

2
ẑ & k0? ' k00?q

2
s /k0uk00 # uk0/k00ð Þ

þxci

2
ik0yq

2
s /k0

@

@r
uk00 # uk0

@

@r
/k00

% &

# xci

2
ik00yq

2
s uk00

@

@r
/k0 # /k00

@

@r
uk0

% &
: (7b)

Here, the higher order terms related to slow spatial variation
@2

@r2 have been neglected. Equations (6a) and (6b) can be
expressed compactly in the form of a matrix as follows:

@

@t
gak þ Hab

k gbk ¼
X

k¼k0þk00
Ma

k;k0;k00 ; (8)

with

gk ¼
/k

uk

) *
;

H ¼
i

x(n

1þ k2?q2s

ikkcs
1þ k2?q2s

ikkcs # ikyqs
@

@r
hUki 0

2

6664

3

7775;
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and

X

k¼k0þk00
Mk;k0;k00 ¼

X

k¼k0þk00
M1

k;k0;k00

X

k¼k0þk00
M2

k;k0;k00

2

6664

3

7775:

The linear theory of this three dimensional Hasegawa-
Mima system is clear. The dispersion equation is as
follows:

k1 ¼ ixk1 +
ix(n

1þ k2?q2s
þ i

k2kc
2
s

x(n
; (9a)

k2 ¼ ixk2 + #i
k2kc

2
s

x(n
: (9b)

The nonlinear terms are crucial to produce the coherent
parts of the beat mode. To evaluate it, we choose k for a
label of a test mode. The mode k interacts with other modes
through various combinations ðk0; k00Þ. Among possible com-
binations, let us take a particular set of ðk0; k00Þ, and we can
write nonlinear coupling terms as

X

k¼k0þk00
Ma

k;k0;k00 ¼
X

k¼p0þp00;k0 6¼p0;p00

Ma
k;p0;p00 þ 2Ma

k;k0;k00 : (10)

By using the eddy-damped quasi-normal Markovian
(EDQNM) theory,36,38 the nonlinear coupling terms can be
decomposed into the eddy-damping rate and fast fluctuating
force. If the number of excited fluctuations is so large that
subtracting the particular set of ðk0; k00Þ mentioned above
does not change the eddy-damping rate,36 the nonlinear cou-
pling terms can be written as

X

k¼k0þk00
Ma

k;k0;k00 ¼ #cNLk;ag
a
k þ Fk;a þ 2Ma

k; k0;k00 ; (11)

where cNLk;a is the eddy-damping rate and Fk;a is the fast fluc-
tuating force, which does not contribute to the coherent
part of the beat mode. Note that the nonlinear damping
rate is larger than the frequency mismatch for strong tur-
bulence. By diagonalization of the matrix H in Eq. (8), the
coherent component of beat mode can be obtained as
follows:

gaðcÞk ðtÞ ¼ 2

ðt

#1
dt0Rab

k ðt; t0ÞMb
k;k0;k00 ; (12)

where the response function Rab
k ðt; t0Þ is

Rab
k ðt; t0Þ ¼ rabdk exp ½ðixkd þ cNLkd Þðt

0 # tÞ- (13)

with

rab1k ffi
1

kkcs
x(n

kkcs 1þ k2?q
2
s

# $

x(n

k2kc
2
s 1þ k2?q

2
s

# $

x2
(n

2

66664

3

77775
;

rab2k ffi

k2kc
2
s 1þ k2?q

2
s

# $

x2
(n

#kkcs
x(n

#kkcs 1þ k2?q
2
s

# $

x(n
1

2

66664

3

77775
:

The details of calculation are presented in Appendix A.
Inserting the coherent component, Eq. (12) into the non-

linear momentum flux, Eq. (3), then we need to calculate the
forth order moment terms. By using the approximation of
quasi-Gaussian statistics (i.e., the assumption of almost stat-
istically independent fluctuations, referring to the closure
theory in Ref. 36), the forth order moment can be decoupled
into a product of quadratic moments, i.e.,

hgk0ðtÞg(k0ðt
0Þgk00ðtÞg(k00ðt

0Þi ¼ hgk0ðtÞg(k0ðt
0Þihgk00ðtÞg(k00ðt

0Þi:
(14)

Here, with the Markovian approximation, the quadratic
moments, or in other words, the two-time correlation
function can be expressed by one-time correlation func-
tions as

hga(k ðt0Þgbk ðtÞi ¼ exp½ixkðt0 # tÞ # cNLk;ajt
0 # tj-hga(k ðtÞgbk ðtÞi:

(15)

Now, we have all the essentials for evaluation of the nonlin-
ear momentum flux.

III. NONLINEAR RESIDUAL STRESS AND
COMPARISON

In this section, we present the results for nonlinear mo-
mentum flux without showing the tedious calculations. The
details of calculation can be found in Appendix B. Here, we
write the nonlinear parallel momentum flux again as
follows:

PNL
r;k ¼ 1

3
h~v cð Þ

r ~n~ukiþ h~vr~n cð Þ~ukiþ h~vr~n~u
cð Þ
k i

! "
: (16)

We need to substitute the coherent components /ðcÞ
k into

the first two terms and uðcÞk into the last term on RHS of
Eq. (16) to calculate the nonlinear momentum flux. The
results of the first two nonlinear momentum flux terms can
be written as

PNL
r;k1 ¼ h~v cð Þ

r ~n~ukiþ h~vr~n cð Þ~uki

¼ 2n0c
2
s<

X

k¼k0þk00

)
iky # ik0y

! "
qs

&
ðt

#1
dt0hR1b(

k t; t0ð ÞMb(
k;k0;k00 t

0ð Þnk0 tð Þuk00 tð Þi
*

¼ #n0vNL1
@hUki
@r

þ n0P
NL;res
r;k1 ; (17)

with the leading order nonlinear diffusivity is

vNL1 ¼ 1

2
qscs

X

k¼k0þk00

sc1xci

1þ k2?q2s
Ik0 Ik00

qs
LI

gk00Ak0;k00 ;
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and the leading order nonlinear residual stress is

PNL;res
r;k1 ¼ # 1

2
c2s

X

k¼k0þk00
Ik0 Ik00

&
)

sc1xci

1þ k2?q2s
# $ gk00Ak0;k00

D002

LsLI

qs
LI

þ 2
Ln
Ls

sc2xcik
002
y q2s gk0gk00

D002

L2s

*
:

Here, sc1 and sc2 are triad interaction time for vorticity
equation and parallel momentum equation, respectively.
They can be estimated by the inverse of corresponding
nonlinear damping rates, because the nonlinear damping
rate is much larger than the frequency mismatch in
strong turbulence. Ik ¼ j/kj

2 is the fluctuation intensity,
1
LI
¼ 1

Ik
@
@r Ik is the intensity gradient scale length, Ls is

the magnetic shear scale length, ! is the mode width,
and other dimensionless parameters are Ak0;k00

¼ k002y k02? # k002? þ 2k02x
# $

q4s ; gk ¼
kycsxk

x2
kþc2k;NL2ð Þ. Note that LI is

positive for increasing intensity from inside to outside and
Ls is positive for normal magnetic shear. Ak0;k00 > 0 for
k0? / k00? and gk is always positive. Therefore, the leading

order nonlinear diffusivity satisfies vNL1 > 0 for increasing

intensity profile in the edge regime. The sign of PNL;res
r;k1

depends on the sign of Ls, and so is negative for normal
magnetic shear.

The other nonlinear momentum flux term can be written
as

PNL
r;k2 ¼ h~vr~n~u

cð Þ
k i

¼ 2n0c
2
s <

X

k¼k0þk00
#ik0yqs

&
ðt

#1
dt0hR2b(

k t; t0ð ÞMb(
k;k0;k00 t

0ð Þ/k0 tð Þnk00 tð Þi

¼ #n0vNL2
@hUki
@r

þ n0P
NL;res
r;k2 ; (18)

where the leading order nonlinear diffusivity is

vNL2 ¼ 1

2
qscs

X

k¼k0þk00
sc2xciIk0 Ik00 gk0 # gk00ð Þk02y q

2
s

qs
LI

;

and the leading order nonlinear residual stress is

PNL;res
r;k2 ¼ c2s

X

k¼k0þk00
sc2xciIk0 Ik00gk00k

02
y q

2
s

qs
Ls

:

Here, the sign of vNL2 is not clear. We can rewrite its expres-
sion in terms of symmetric k0 and k00; vNL2 / ðgk0 # gk00Þ
ðk02y # k002y Þ, which is positive. Then, one can find that the
sign of vNL2 is the same as that of vNL1 , i.e., it is positive for
increasing intensity profile. However, the sign of nonlinear
residual stress, PNL;res

r;k2 is opposite to that of PNL;res
r;k1 , i.e.,

PNL;res
r;k2 is positive for normal magnetic shear.
To compare with the usual Reynolds stress, we also cal-

culate it quasilinearly

PRey
r;k ¼ n0h~vr~uki ¼ <

X

k¼k0þk00
n0c

2
s hikyqs/

(
kuki

¼ n0 #vQL
@hUki
@r

þPQL;res
r;k

% &
; (19)

with quasilinear diffusivity

vQL ¼ qscs
X

k¼k0þk00
hkIk;

and quasilinear residual stress

PQL;res
r;k ¼ #c2s

X

k¼k0þk00
hk

D2

LsLI
Ik:

Here, hk ¼
k2yqscsjck;NL2j
x2

kþc2k;NL2ð Þ. Parallel symmetry breaking induced

by fluctuation intensity gradient35 is used for the quasilinear
residual stress. The quasilinear diffusivity is positive definite.
Different from the nonlinear residual stress, the sign of qua-

silinear residual stress depends on both LI and Ls. P
QL;res
r;k is

negative for increasing intensity profile and normal magnetic
shear.

Before comparing the nonlinear results with the quasilin-
ear ones, we clarify the orderings of typical parameters that
we will take in the following. The relative fluctuation ampli-

tude from mixing length estimate, i.e., /k / 1
k?Ln

is used. For

the spatial scales, kx / ky / k? / 1=!; Ln / LI / L, and

qs
D

# $2 / D
L

! "2

/ L
Ls
/ " are used, with " 0 1 a small ordering

parameter, which are consistent with typical blob parame-
ters.15,20,21 For the temporal scale, normalized real frequency
is order of xk

ðkycsÞ /
qs
L / ". The triad interaction time can be

estimated as the inverse of nonlinear damping rate, because
the frequency mismatch is much smaller than the nonlinear
damping rate, as mentioned before. It was shown that
the order of magnitude of the nonlinear damping rate for vor-

ticity equation could be estimated as cNLk;1 /
k3?q

3
s

1þk2?q
2
s
kycs/k

/ k2?q
2
sxk.

36 Comparing the nonlinear terms in vorticity
equations and the parallel momentum equation, one can

divide cNLk;1 by a factor of k2?q
2
s to estimate cNLk;2, i.e., c

NL
k;2 / xk.

Then we can estimate the order of magnitude of the nonlinear
and quasilinear diffusivity and residual stress based on above
orderings. The results are listed in Table I.

From Table I, we can see that the nonlinear diffusivity is
smaller than the quasilinear one. However, the leading order
nonlinear residual stress is in the same order as quasi-linear
residual stress, but with opposite sign for increasing fluctua-
tion intensity profile. Note that the dominant contribution to
the nonlinear residual stress comes from h~vr~n~uðcÞk i which is

TABLE I. Comparison of nonlinear and quasilinear results.

Diffusivity(qscs) Residual stress (c2s )

h~vr~uki "1=2 #"5=2

h~vðcÞr ~n~ukiþ h~vr~nðcÞ~uki "3=2 #"7=2

h~vr~n~uðcÞk i "5=2 "5=2
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due to the coherent component of ~uk. This is because the
order of the nonlinear interaction coefficient for ~uk is higher

than that for /k by an order k2?q
2
s /

q2s
!2 / ". Moreover, the

term proportional to @
@r uk0 or

@
@r uk00 in M2

k;k0;k00 results in the

leading order nonlinear residual stress. The details of calcu-
lation can be found in Appendix B. The radial derivative of
uk contains the radial derivative of kk, due to the radial posi-

tion dependence of kk. We also note that an asymmetric par-

allel fluctuation spectrum is not necessary for non-zero,
nonlinear residual stress due to the radial derivative of kk.
This is in contrast to the quasilinear residual stress, in which
an asymmetric parallel fluctuation spectrum is required. For

instance, the factor !2

LILs
in the quasilinear residual stress is

induced by fluctuation intensity gradient symmetry breaking,

which is order of "2. This is a partial reason why nonlinear
residual stress can be comparable to the quasilinear one.
Another reason is that the relative fluctuation amplitude is

large in strong turbulence, i.e., j/kj
2 / !2

L2 / ". This is differ-

ent from weak turbulence, for which j/kj
2 / "2.

IV. SUMMARYAND DISCUSSION

In the present work, we have derived the nonlinear par-
allel momentum flux for a three dimensional coupled drift
waves and ion acoustic waves system. A Markovian
approximation has been used for closure modelling. We
estimate the triad interaction times for conditions of strong
electrostatic turbulence. We also compared the nonlinear
results with the quasilinear ones. It is shown that the nonlin-
ear diffusivity is smaller than the quasilinear one. The lead-
ing order nonlinear residual stress can be comparable to
quasilinear one based on the orderings we choose. This
indicates that taking into account nonlinear wave-wave cou-
pling effects on parallel intrinsic rotation is important. It is
known that non-zero quasilinear residual stress requires
symmetry breaking such as fluctuation intensity gradient35

which we adopt in this work. However, in contrast to quasi-
linear theory, we find that an asymmetric parallel fluctua-
tion spectrum is not required for a non-zero nonlinear
residual stress.

According to our theoretical results, the nonlinear resid-
ual stress is not negligible for strong electrostatic turbulence.
In general, the nonlinear momentum flux is of potential rele-
vance to tokamak edge region where similar blobs in L-
mode are also observed. Therefore, it may be needed to
include the effects of nonlinear residual stress induced by
blob ejection on intrinsic rotation in tokamak experiments.
In addition, recent analytic and numerical studies have
shown that the three-dimensional scrape-off layer turbulence
is important to intrinsic rotation and momentum trans-
port,39–41 so consideration of nonlinear momentum transport
in those models might be worthwhile. Furthermore, numeri-
cal simulations based on the model discussed in this paper is
useful for our understanding of the parallel momentum trans-
port in strong electrostatic turbulence. Recent experiments
on ASDEX-U found the triple fluctuation term, ~vr~n~vpol is
dominant as compared to the poloidal Reynolds stress in

turbulent poloidal momentum flux induced by ELM bursts
during an H-mode discharge.42 In our future work, we will
extend this work to focus on theoretical models of the
nonlinear turbulent poloidal momentum transport. We also
plan to compare nonlinear residual stress models with
J-TEXT measurements of intrinsic torque and blob
populations.

Finally, we note that both resonant particle momentum
diffusivity and residual stress can be calculated systemati-
cally to Oð/4

kÞ in perturbation theory, for weak turbulence.
The analysis follows Manheimer and Dupree43 and is similar
to that for anomalous heating.44 Though nominally higher
order in perturbation theory, the results are not negligible, on
account of differing resonant particle populations at different
phase speeds.
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APPENDIX A: LINEAR RESPONSE FUNCTION OF
THREE DIMENSIONAL HASEGAWA-MIMA SYSTEM

The linearization of three dimensional Hasegawa-Mima
system can be proceeded as follows:

H ¼
i

x(n

1þ k2?q2s

ikkcs
1þ k2?q2s

ikkcs 0

2

664

3

775 )
a b

c 0

" #

;

where we have neglected ikyqs
@
@r hUki.

,,,,
a# k b

c #k

,,,, ¼ 0 ) k2 # ak# bc ¼ 0 :

k ¼
i

x(n

1þ k2?q2s
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i
x(n

1þ k2?q2s

% &2

þ 4
ikkcs

1þ k2?q2s
ikkcs

s

2
:

k1 ffi i
x(n

1þ k2?q2s
þ i

k2kc
2
s

x(n
; k2 ffi #i

k2kc
2
s

x(n
: (A1)

The transformation matrixes are

P ¼
b b

k1 # a k2 # a

" #

; and

P#1 ¼ 1

b k2 # k1ð Þ
k2 # a #b

a# k1 b

" #

:

By direct diagonalization of matrix H in Eq. (8) and
with the help of Eq. (11), we can get the equation

@

@t
g0ak þ kk;a þ cNLk:a

# $
g0ak ¼ 2M0a

k;k0;k00 þ F0
k;a: (A2)
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Then, the above equation can be solved as

g0aðcÞk ¼
ðt

#1
dt0 exp ½ðkk;a þ cNLk:aÞðt

0 # tÞ-ð2M0a
k;k0;k00 þ F0

k;aÞ; (A3)

where g0ak ¼ P#1
a;bg

b
k ;M

0a
k;k0;k00 ¼ P#1

a;bM
b
k;k0;k00 ;F

0
k;a ¼ P#1

a;bFk;b:

Because Fk;a is fast fluctuating force, which does not contribute to coherent parts of the beat mode, we can neglect it here.
Multiplication of Eq. (A3) by matrix P on the left, we can get the coherent component of the beat mode

gaðcÞk ¼ Pa;bg
0bðcÞ
k : (A4)

The explicit expressions can be written as

/ðcÞ
k ¼ 2

ðt

#1
dt0 exp ½ðixk1 þ cNLk1 Þðt

0 # tÞ-P11½P#1
11 M

1
k;k0;k00ðt

0Þ þ P#1
12 M

2
k;k0;k00ðt

0Þ-

þ2

ðt

#1
dt0 exp ½ðixk2 þ cNLk2 Þðt

0 # tÞ-P12½P#1
21 M

1
k;k0;k00ðt

0Þ þ P#1
22 M

2
k;k0;k00ðt

0Þ-;

uðcÞk ¼ 2

ðt

#1
dt0 exp ½ðixk1 þ cNLk1 Þðt

0 # tÞ-P21½P#1
11 M

1
k;k0;k00ðt

0Þ þ P#1
12 M

2
k;k0;k00ðt

0Þ-

þ2

ðt

#1
dt0 exp ½ðixk2 þ cNLk2 Þðt

0 # tÞ-P22½P#1
21 M

1
k;k0;k00ðt

0Þ þ P#1
22 M

2
k;k0;k00ðt

0Þ-:

Then, we can rewrite them compactly in the form of matrix as Eqs. (12) and (13) easily. The matrix in response functions are
rab1k ¼ Pa1P#1

1b and rab2k ¼ Pa2P#1
2b , respectively.

APPENDIX B: CALCULATION OF NONLINEAR MOMENTUM FLUX

More detailed calculation of nonlinear contribution is given in this section. The linearization of Eq. (6b) can be written as

uk ¼
kkcs # kyqs

@hUki
@r

xk þ ick;NL2
/k: (B1)

Because xk2 resulted from correction of the parallel compression is much smaller than xk1, we only take xk1 here, and
omit the subscript 1 for simplicity in the following calculation. First, we present the result of PNL

r;k1 without tedious
calculations

PNL
r;k1 ¼ h~v cð Þ

r ~n~ukiþ h~vr~n cð Þ~uki¼ 2n0c
2
s<

X

k¼k0þk00
iky# ik0y

! "
qs

ðt

#1
dt0hR1b

k t; t0ð ÞMb(
k;k0;k00 t

0ð Þnk0 tð Þuk00 tð Þi
) *

¼ 2n0c
2
s<

X

k¼k0þk00
ik00yqs

ðt

#1
dt0 exp #ixk1þ cNLk1

# $
t0# tð Þ

h i
hM1(

k;k0;k00 t
0ð Þ/k0 tð Þuk00 tð Þi

þ2n0c
2
s<

X

k¼k0þk00
ik00yqs

ðt

#1
dt0 exp #ixk1þ cNLk1

# $
t0# tð Þ

h i.
kkcs
x(n

M2(
k;k0;k00 t

0ð Þ/k0 tð Þuk00 tð Þ
/

¼ 1

2
n0qscs

X

k¼k0þk00
Ik0Ik00

@hUki
@r

# sc1xci

1þ k2?q2s
# $gk00

qs
LI
Ak0;k00þ

Ln
Ls

sc2xci 2k002y q2s
pk00D

002

LsLI
þD02þD002

LsLI
hk0hk00 #

3

2
k002y q2s gk0gk00

% &" #( )

#1

2
n0c

2
s

X

k¼k0þk00
Ik0 Ik00

"
sc1xci

1þ k2?q2s
# $gk00Ak0;k00

D002

LsLI

qs
LI

þ2
Ln
Ls

sc2xcik
002
y q2s gk0gk00

D002

L2s

#sc2xci
D02D002

L2s L
2
I

Ln
Ls

hk0hk00 þ k002y q2s pk00 #3k002y q2s gk0gk00
! "#

¼#n0vNL1
@hUki
@r

þn0P
NL;res
r;k1 ; (B2)

052302-6 Wang, Wen, and Diamond Phys. Plasmas 22, 052302 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.239.66.163 On: Mon, 18 May 2015 15:26:32



with

vNL1 ¼ 1

2
qscs

X

k¼k0þk00
Ik0Ik00

sc1xci

1þ k2?q2s
# $ qs

LI
gk00Ak0;k00#sc2xci

Ln
Ls

2k002y q2s pk00
D002

LsLI
þ D02 þ D002

LsLI
hk0hk00 #

3

2
k002y q2s gk0gk00

% &" #( )

;

and

PNL;res
r;k1 ¼ # 1

2
c2s

X

k¼k0þk00
Ik0 Ik00

)
sc1xci

1þ k2?q2s
# $ gk00Ak0;k00

D002

LsLI

qs
LI

þ 2
Ln
Ls

sc2xcik
002
y q2s gk0gk00

D002

L2s

#sc2xci
D02D002

L2s L
2
I

Ln
Ls

hk0hk00 þ k002y q2s pk00 # 3k002y q2s gk0gk00
! "*

:

Here, the dimensionless parameters are Ak0;k00 ) k002y k02? # k002? þ 2k02x
# $

q4s ; gk )
kycsxk

x2
kþc2k;NL2ð Þ ; hk )

k2yqscsck;NL2
x2

kþc2k;NL2ð Þ and pk )
k2y c

2
s

x2
kþc2k;NL2ð Þ.

The first lines in vNL1 and PNL;res
r;k1 are leading order.

The calculation of PNL
r;k2 is written as follows:

PNL
r;k2 ¼ h~vr~n~u

cð Þ
k i ¼ 2n0c

2
s <

X

k¼k0þk00
#ik0yqs

ðt

#1
dt0hR2b(

k t; t0ð ÞMb(
k;k0;k00 t

0ð Þ/k0 tð Þnk00 tð Þi

¼ 2n0c
2
s<

X

k¼k0þk00
#ik0yqs

ðt

#1
dt0 exp #ixk2 þ cNLk2

# $
t0 # tð Þ

h i
hM2(

k;k0;k00 t
0ð Þ/k0 tð Þnk00 tð Þi

þ 2n0c
2
s<

X

k¼k0þk00
#ik0yqs

ðt

#1
dt0 exp #ixk1 þ cNLk1

# $
t0 # tð Þ

h i.
kkcs 1þ k2?q

2
s

# $

x(n
M1(

k;k0;k00 t
0ð Þ/k0 tð Þnk00 tð Þ

/

þ 2n0c
2
s<

X

k¼k0þk00
#ik0yqs

ðt

#1
dt0 exp #ixk2 þ cNLk2

# $
t0 # tð Þ

h i. k2kc
2
s 1þ k2?q

2
s

# $

x2
(n

M2(
k;k0;k00 t

0ð Þ/k0 tð Þnk00 tð Þ
/

¼ #n0c
2
s<

X

k¼k0þk00
sc2xcik

02
y q

2
s h/(

k0 tð Þ/k0 tð Þi
.
qs

@u(k00 tð Þ
@r

nk00 tð Þ
/
# hu(k0 tð Þ/k0 tð Þi

.
qs

@/(
k00 tð Þ
@r

nk00 tð Þ
/" #

þn0c
2
s<

X

k¼k0þk00
sc1xci

kkcs 1þ k2?q
2
s

# $

x(n
k02y k002? # k0 2? þ 2k002x

# $
q4s h/

(
k0 tð Þ/k0 tð Þi

.
qs

@/(
k00 tð Þ
@r

nk00 tð Þ
/

#n0c
2
s<

X

k¼k0þk00
sc2xci

k2kc
2
s 1þ k2?q

2
s

# $

x2
(n

k02y q
2
s h/(

k0 tð Þ/k0 tð Þi
.
qs

@u(k00 tð Þ
@r

nk00 tð Þ
/
#hu(k0 tð Þ/k0 tð Þi

.
qs

@/(
k00 tð Þ
@r

nk00 tð Þ
/" #

:

(B3)

As we can see, we have written PNL
r;k2 into three components, and we will calculate each of them one by one as follows:

X

k¼k0þk00

.
qs

@u(k00 tð Þ
@r

nk00 tð Þ
/

¼
X

k¼k0þk00

cs
qs

x00

Ls
# qs

cs

@hUki
@r

% &
k00yqs

xk00 # icNLk002

.
qs

@/(
k00

@r
/k00

/
#

qs
1

Ls
k00yqs

xk00 # icNLk002
h/(

k00/k00 i

2

64

3

75

¼
X

k¼k0þk00
# 1

2

k00yqsIk00

xk00 # icNLk002
2
cs
Ls

þ qs
LI

@hUki
@r

% &
: (B4)

Here, kk ¼ ky x
Ls
is used. Ls is the magnetic shear scale length, x ¼ r0 # r, where r0 is the radial location of resonant surface. So

the second term in the second line comes from @
@r kk ¼ # ky

Ls
. Note that parallel asymmetric fluctuation spectrum is not required

for the second term

X

k¼k0þk00
hu(k0 tð Þ/k0 tð Þi ¼

X

k¼k0þk00

cs
qs

x0

Ls
# qs

cs

@hUki
@r

% &
k0yqs

xk0 # icNLk02
/(
k0 tð Þ/k0 tð Þ

* +

¼ #
X

k¼k0þk00

k0yqsIk0

xk0 # icNLk02

cs
qs

D02

LsLI
þ
@hUki
@r

 !

: (B5)
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According to Eqs. (B4) and (B5) we can get the first component of PNL
r;k2, i.e., Eq. (B3)

#n0c
2
s<

X

k¼k0þk00
sc2xcik

02
y q

2
s h/(

k0 tð Þ/k0 tð Þi
.
qs

@u(k00 tð Þ
@r

nk00 tð Þ
/
# hu(k0 tð Þ/k0 tð Þi

.
qs

@/(
k00 tð Þ
@r

nk00 tð Þ
/" #

¼ #n0c
2
s<

X

k¼k0þk00
sc2xcik

02
y q

2
s # 1

2
Ik0

k00yqsIk00

xk00 # icNLk002
2
cs
Ls

þ qs
LI

@hUki
@r

% &
þ

k0yqsIk0

xk0 # icNLk02

cs
qs

D02

LsLI
þ
@hUki
@r

 !
qsIk00
2LI

" #

¼ # 1

2
n0c

2
s

X

k¼k0þk00
sc2xciIk0Ik00

qs
LI

gk0 # gk00ð Þ
qs
cs
k02y q

2
s

@hUki
@r

þ qs
LI

k02y gk0
D02

LsLI
# 2

qs
Ls

k02y gk00

" #

:

Now, we turn to the calculation of the second component of PNL
r;k2.

n0c
2
s<

X

k¼k0þk00
sc1xci

kkcs 1þ k2?q
2
s

# $

x(n
k02y k002? # k0 2? þ 2k002x

# $
q4s h/

(
k0 tð Þ/k0 tð Þi

.
qs

@/(
k00 tð Þ
@r

nk00 tð Þ
/

¼ n0c
2
s<

X

k¼k0þk00
sc1xci

Ln x0 þ x00ð Þ 1þ k2?q
2
s
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Lsqs
Ak00;k0 h/(
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.
qs

@/(
k00 tð Þ
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nk00 tð Þ
/
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2
s

X

k¼k0þk00
sc1xci

Ln 1þ k2?q
2
s

# $

Ls
Ak00;k0

D02

2L2I
Ik0 Ik00 :

Note that we have used the relation <
P

k¼k0þk00 hx00qs
@/(

k00 ðtÞ
@r nk00ðtÞi ¼ 0 in the calculation above.

By the same token, we can get the last component of PNL
r;k2 as follows:
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þ
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# k02y D
02 k00yqs
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2
s

X
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sc2xciIk0 Ik00

L2n 1þ k2?q
2
s

# $
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k02y D02 þD002ð Þ g0k # g00k

# $qs
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(B6)

Here, we have used the relation

<
X

k¼k0þk00

.
x00qs

@u(k00 tð Þ
@r

nk00 tð Þ
/

¼ g00k Ik00
D002

Ls

3qs
2LI

:

Finally, we combine all the components of PNL
r;k2 to obtain

PNL
r;k2 ¼ # 1

2
n0qscs

X

k¼k0þk00
sc2xciIk0Ik00 gk0 # gk00ð Þ k02y q
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s
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(

gk00k
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2
s
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2
s

# $
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2
s

L2s
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þ n0P
NL;res
r;k2 ; (B7)
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with

vNL2 ¼ 1

2
qscs

X

k¼k0þk00
sc2xciIk0Ik00 gk0 # gk00ð Þ & k02y q

2
s þ k02y D02 þ D002ð Þ L

2
n 1þ k2?q

2
s

# $

L2s

" #
qs
LI

;

and

PNL;res
r;k2 ¼ c2s

X

k¼k0þk00
sc2xciIk0 Ik00

& gk00k
02
y q

2
s

qs
Ls

# L2n
2L2s

1þ k2?q
2
s

# $ Ls 1þ k2?q
2
s

# $

Lnk2?q2s
Ak00;k0

D02

L2I
#2gk00k

02
y D02 þ D002ð Þqs

Ls
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02
y q

2
s

L2s
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# $D
02

L2I

qs
Ls

" #( )

:

Note that the first terms of vNL2 and PNL;res
r;k2 are leading order.

We have represented sc1 by sc2 by using the relation
sc2 ¼

k2?q
2
s

ð1þk2?q
2
s Þ
sc1, which comes from the comparison between

nonlinear terms in vorticity equations and those in parallel
momentum equation.
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